Here, for the graphene-free Covid vax crowd: 3 Patents For Vaccines Containing GRAPHENE OXIDE

Submitted by Harold Saive

Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity
Ligeng Xu 1, Jian Xiang, Ye Liu, Jun Xu, Yinchan Luo, Liangzhu Feng, Zhuang Liu, Rui Peng
PMID: 26814441 DOI: 10.1039/c5nr09208f

Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual-polymer modified GOs (GO-PEG-PEI) can act as a positive modulator to promote the maturation of dendritic cells (DCs) and enhance their cytokine secretion through the activation of multiple toll-like receptor (TLR) pathways while showing low toxicity. Moreover, this GO-PEG-PEI can serve as an antigen carrier to effectively shuttle antigens into DCs. These two advantages enable GO-PEG-PEI to serve as a novel vaccine adjuvant. In the subsequent in vivo experiments, compared with free Ure B and clinically used aluminum-adjuvant-based vaccine (Alum-Ure B), GO-PEG-PEI-Ure B induces stronger cellular immunity via intradermal administration, suggesting promising applications in cancer immunotherapy. Our work not only presents a novel, highly effective GO-based vaccine nano-adjuvant, but also highlights the critical roles of surface chemistry for the rational design of nano-adjuvants.

Preparation and application of pachyman nano adjuvant based on graphene oxide and adjuvant/antigen co-delivery vaccine

Preparation and application of pachyman nano adjuvant and adjuvant/antigen co-delivery vaccine based on graphene oxide, belonging to the field of medicines. The invention comprises a pachyman nano adjuvant which is formed by taking a nano graphene oxide material as a carrier and pachyman loaded on the carrier, and an adjuvant/antigen co-delivery vaccine formed by the adjuvant and an antigen. The pachyman nanometer adjuvant can promote dendritic cell maturation, enhance lymphocyte function, facilitate drug release, effectively prolong drug effect, prevent immune tolerance, and greatly enhance immune effect and reaction time. The adjuvant/antigen co-delivery vaccine enhances the bioavailability of pachyman and antigen, enables the antigen and the adjuvant to be ingested by the same cell, greatly enhances the targeting property of the vaccine, and can induce not only humoral immunity but also stronger cellular immunity. The invention is used as a novel adjuvant and vaccine, and can be expected to be used for preventing and treating human diseases.

Nano coronavirus recombinant vaccine taking graphene oxide as carrier

The invention belongs to the field of nano materials and biomedicine, and relates to a vaccine, in particular to development of 2019-nCoV coronavirus nuclear recombinant nano vaccine. The invention also comprises a preparation method of the vaccine and application of the vaccine in animal experiments. The new corona vaccine contains graphene oxide, carnosine, CpG and new corona virus RBD; binding carnosine, CpG and neocoronavirus RBD on the backbone of graphene oxide; the CpG coding sequence is shown as SEQ ID NO 1; the novel coronavirus RBD refers to a novel coronavirus protein receptor binding region which can generate a high-titer specific antibody aiming at the RBD in a mouse body, and provides a strong support for prevention and treatment of the novel coronavirus.

This entry was posted in Uncategorized. Bookmark the permalink.