DNA-Coated Gold Nanoparticles for the Detection of mRNA in Live Hydra Vulgaris Animals
-
- Maria Moros, Maria-Eleni Kyriazi, Afaf H. El-Sagheer, Tom Brown, Claudia Tortiglione*, and Antonios G. Kanaras*
Abstract
Advances in nanoparticle design have led to the development of nanoparticulate systems that can sense intracellular molecules, alter cellular processes, and release drugs to specific targets in vitro. In this work, we demonstrate that oligonucleotide-coated gold nanoparticles are suitable for the detection of mRNA in live Hydra vulgaris, a model organism, without affecting the animal’s integrity. We specifically focus on the detection of Hymyc1 mRNA, which is responsible for the regulation of the balance between stem cell self-renewal and differentiation. Myc deregulation is found in more than half of human cancers, thus the ability to detect in vivo related mRNAs through innovative fluorescent systems is of outmost interest.
SPECIAL ISSUE
This article is part of the Translational DNA Nanotechnology special issue.
Introduction
ARTICLE SECTIONS
Experimental Section
ARTICLE SECTIONS
Synthesis of 13.9 ± 1.4 nm AuNPs
Oligonucleotide Design
Synthesis of DNA-AuNPs for mRNA Detection
Culture of Animals
Toxicity Assay
In Vivo Imaging
Results and Discussion
ARTICLE SECTIONS
Design and Synthesis of DNA-AuNPs
Detection of Hymyc1 mRNA in Hydra
Conclusions
ARTICLE SECTIONS
Supporting Information
ARTICLE SECTIONS
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b17846.
-
Detailed DNA-coated AuNP characterization such as UV–vis spectra, gel electrophoresis images, and zeta potential measurements; complementary fluorescence images and experimental results of live Hydra incubated with DNA-coated nanoprobes (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
ARTICLE SECTIONS
A.K. and M.-E.K. thank the Leverhulme Trust (ref RPG-2015-005) and BBSRC (Grant BB/P017711/1) for funding of this project. M.M. acknowledges the European Union ́s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant agreement 660228).
References
ARTICLE SECTIONS
This article references 52 other publications.
-
Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668– 677, DOI: 10.1021/jp026731y
-
Cutler, J. I.; Auyeung, E.; Mirkin, C. A. Spherical Nucleic Acids. J. Am. Chem. Soc. 2012, 134, 1376– 1391, DOI: 10.1021/ja209351u
-
Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold Nanoparticles for Biology and Medicine. Angew. Chem., Int. Ed. 2010, 49, 3280– 3294, DOI: 10.1002/anie.200904359
-
Heuer-Jungemann, A.; Harimech, P. K.; Brown, T.; Kanaras, A. G. Gold Nanoparticles and Fluorescently-Labelled DNA as a Platform for Biological Sensing. Nanoscale 2013, 5, 9503– 9510, DOI: 10.1039/c3nr03707j
-
Bartczak, D.; Muskens, O. L.; Sanchez-Elsner, T.; Kanaras, A. G.; Millar, T. M. Manipulation of in Vitro Angiogenesis Using Peptide-Coated Gold Nanoparticles. ACS Nano 2013, 7, 5628– 5636, DOI: 10.1021/nn402111z
-
El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface Plasmon Resonance Scattering and Absorption of Anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett. 2005, 5, 829– 834, DOI: 10.1021/nl050074e
-
Lytton-Jean, A. K. R.; Mirkin, C. A. A Thermodynamic Investigation Into the Binding Properties of DNA Functionalized Gold Nanoparticle Probes and Molecular Fluorophore Probes. J. Am. Chem. Soc. 2005, 127, 12754– 12755, DOI: 10.1021/ja052255o
-
Kyriazi, M. E.; Giust, D.; El-Sagheer, A. H.; Lackie, P. M.; Muskens, O. L.; Brown, T.; Kanaras, A. G. Multiplexed mRNA Sensing and Combinatorial-Targeted Drug Delivery Using DNA-Gold Nanoparticle Dimers. ACS Nano 2018, 12, 3333– 3340, DOI: 10.1021/acsnano.7b08620
-
Heuer-Jungemann, A.; El-Sagheer, A. H.; Lackie, P. M.; Brown, T.; Kanaras, A. G. Selective Killing of Cells Triggered by Their mRNA Signature in the Presence of Smart Nanoparticles. Nanoscale 2016, 8, 16857– 16861, DOI: 10.1039/C6NR06154K
-
Barnaby, S. N.; Perelman, G. A.; Kohlstedt, K. L.; Chinen, A. B.; Schatz, G. C.; Mirkin, C. A. Design Considerations for RNA Spherical Nucleic Acids (SNAs). Bioconjugate Chem. 2016, 27, 2124– 2131, DOI: 10.1021/acs.bioconjchem.6b00350
-
Ding, Y.; Jiang, Z. W.; Saha, K.; Kim, C. S.; Kim, S. T.; Landis, R. F.; Rotello, V. M. Gold Nanoparticles for Nucleic Acid Delivery. Mol. Ther. 2014, 22, 1075– 1083, DOI: 10.1038/mt.2014.30
-
Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312, 1027– 1030, DOI: 10.1126/science.1125559
-
Giljohann, D. A.; Seferos, D. S.; Prigodich, A. E.; Patel, P. C.; Mirkin, C. A. Gene Regulation with Polyvalent siRNA-Nanoparticle Conjugates. J. Am. Chem. Soc. 2009, 131, 2072– 2073, DOI: 10.1021/ja808719p
-
Cutler, J. I.; Zhang, K.; Zheng, D.; Auyeung, E.; Prigodich, A. E.; Mirkin, C. A. Polyvalent Nucleic Acid Nanostructures. J. Am. Chem. Soc. 2011, 133, 9254– 9257, DOI: 10.1021/ja203375n
-
Jensen, S. A.; Day, E. S.; Ko, C. H.; Hurley, L. A.; Luciano, J. P.; Kouri, F. M.; Merkel, T. J.; Luthi, A. J.; Patel, P. C.; Cutler, J. I.; Daniel, W. L.; Scott, A. W.; Rotz, M. W.; Meade, T. J.; Giljohann, D. A.; Mirkin, C. A.; Stegh, A. H. Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma. Sci. Transl. Med. 2013, 5, 209ra152, DOI: 10.1126/scitranslmed.3006839
-
Sita, T. L.; Kouri, F. M.; Hurley, L. A.; Merkel, T. J.; Chalastanis, A.; May, J. L.; Ghelfi, S. T.; Cole, L. E.; Cayton, T. C.; Barnaby, S. N.; Sprangers, A. J.; Savalia, N.; James, C. D.; Lee, A.; Mirkin, C. A.; Stegh, A. H. Dual Bioluminescence and Near-Infrared Fluorescence Monitoring to Evaluate Spherical Nucleic Acid Nanoconjugate Activity In Vivo. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 4129– 4134, DOI: 10.1073/pnas.1702736114
-
Conde, J.; Tian, F. R.; Hernandez, Y.; Bao, C. C.; Cui, D. X.; Janssen, K. P.; Ibarra, M. R.; Baptista, P. V.; Stoeger, T.; de la Fuente, J. M. In Vivo Tumor Targeting via Nanoparticle-Mediated Therapeutic siRNA Coupled to Inflammatory Response in Lung Cancer Mouse Models. Biomaterials 2013, 34, 7744– 7753, DOI: 10.1016/j.biomaterials.2013.06.041
-
Conde, J.; Ambrosone, A.; Sanz, V.; Hernandez, Y.; Marchesano, V.; Tian, F.; Child, H.; Berry, C. C.; Ibarra, M. R.; Baptista, P. V.; Tortiglione, C.; de la Fuente, J. M. Design of Multifunctional Gold Nanoparticles for In Vitro and In Vivo Gene Silencing. ACS Nano 2012, 6, 8316– 8324, DOI: 10.1021/nn3030223
-
Conde, J.; Ambrosone, A.; Hernandez, Y.; Tian, F. R.; McCully, M.; Berry, C. C.; Baptista, P. V.; Tortiglione, C.; de la Fuente, J. M. 15 Years on siRNA Delivery: Beyond the State-of-the-Art on Inorganic Nanoparticles for RNAi Therapeutics. Nano Today 2015, 10, 421– 450, DOI: 10.1016/j.nantod.2015.06.008
-
Halo, T. L.; McMahon, K. M.; Angeloni, N. L.; Xu, Y.; Wang, W.; Chinen, A. B.; Malin, D.; Strekalova, E.; Cryns, V. L.; Cheng, C.; Mirkin, C. A.; Thaxton, C. S. NanoFlares for the Detection, Isolation, and Culture of Live Tumor Cells from Human Blood. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 17104– 17109, DOI: 10.1073/pnas.1418637111
-
Seferos, D. S.; Giljohann, D. A.; Hill, H. D.; Prigodich, A. E.; Mirkin, C. A. Nano-flares: Probes for Transfection and mRNA Detection in Living Cells. J. Am. Chem. Soc. 2007, 129, 15477– 15479, DOI: 10.1021/ja0776529
-
Yang, Y. J.; Huang, J.; Yang, X. H.; Quan, K.; Wang, H.; Ying, L.; Xie, N. L.; Ou, M.; Wang, K. M. FRET Nanoflares for Intracellular mRNA Detection: Avoiding False Positive Signals and Minimizing Effects of System Fluctuations. J. Am. Chem. Soc. 2015, 137, 8340– 8343, DOI: 10.1021/jacs.5b04007
-
Jayagopal, A.; Halfpenny, K. C.; Perez, J. W.; Wright, D. W. Hairpin DNA-Functionalized Gold Colloids for the Imaging of mRNA in Live Cells. J. Am. Chem. Soc. 2010, 132, 9789– 9796, DOI: 10.1021/ja102585v
-
Zhou, Q. M.; Qian, Z. Y.; Gu, Y. Q. Detection of MDR1 mRNA Expression With Optimized Gold Nanoparticle Beacon. In Conference on Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications VIII; SPIE, 2016. DOI: 10.1117/12.2220035 .
-
Vilela, P.; Heuer-Jungemann, A.; El-Sagheer, A.; Brown, T.; Muskens, O. L.; Smyth, N. R.; Kanaras, A. G. Sensing of Vimentin mRNA in 2D and 3D Models of Wounded Skin Using DNA-Coated Gold Nanoparticles. Small 2018, 14, 1703489, DOI: 10.1002/smll.201703489
-
Prigodich, A. E.; Randeria, P. S.; Briley, W. E.; Kim, N. J.; Daniel, W. L.; Giljohann, D. A.; Mirkin, C. A. Multiplexed Nanoflares: mRNA Detection in Live Cells. Anal. Chem. 2012, 84, 2062– 2066, DOI: 10.1021/ac202648w
-
Li, N.; Chang, C.; Pan, W.; Tang, B. A Multicolor Nanoprobe for Detection and Imaging of Tumor-Related mRNAs in Living Cells. Angew. Chem., Int. Ed. 2012, 51, 7426– 7430, DOI: 10.1002/anie.201203767
-
Qiao, G. M.; Gao, Y.; Li, N.; Yu, Z. Z.; Zhuo, L. H.; Tang, B. Simultaneous Detection of Intracellular Tumor mRNA with Bi-Color Imaging Based on a Gold Nanoparticle/Molecular Beacon. Chem. – Eur. J. 2011, 17, 11210– 11215, DOI: 10.1002/chem.201100658
-
Pan, W.; Zhang, T.; Yang, H.; Diao, W.; Li, N.; Tang, B. Multiplexed Detection and Imaging of Intracellular mRNAs Using a Four-Color Nanoprobe. Anal. Chem. 2013, 85, 10581– 10588, DOI: 10.1021/ac402700s
-
Tu, Y. Q.; Wu, P.; Zhang, H.; Cai, C. X. Fluorescence Quenching of Gold Nanoparticles Integrating With a Conformation-Switched Hairpin Oligonucleotide Probe for microRNA Detection. Chem. Commun. 2012, 48, 10718– 10720, DOI: 10.1039/c2cc35564g
-
Li, J.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Xie, N.; Wu, Y.; Ma, C.; Wang, K. Two-Color-Based Nanoflares for Multiplexed MicroRNAs Imaging in Live Cells. Nanotheranostics 2018, 2, 96– 105, DOI: 10.7150/ntno.22960
-
Ambrosone, A.; Mattera, L.; Marchesano, V.; Quarta, A.; Susha, A. S.; Tino, A.; Rogach, A. L.; Tortiglione, C. Mechanisms Underlying Toxicity Induced by CdTe Quantum Dots Determined in an Invertebrate Model Organism. Biomaterials 2012, 33, 1991– 2000, DOI: 10.1016/j.biomaterials.2011.11.041
-
Tortiglione, C.; Antognazza, M. R.; Tino, A.; Bossio, C.; Marchesano, V.; Bauduin, A.; Zangoli, M.; Morata, S. V.; Lanzani, G. Semiconducting Polymers are Light Nanotransducers in Eyeless Animals. Sci. Adv. 2017, 3, e1601699, DOI: 10.1126/sciadv.1601699
-
Ambrosone, A.; Roopin, M.; Pelaz, B.; Abdelmonem, A. M.; Ackermann, L. M.; Mattera, L.; Allocca, M.; Tino, A.; Klapper, M.; Parak, W. J.; Levy, O.; Tortiglione, C. Dissecting Common and Divergent Molecular Pathways Elicited by CdSe/ZnS Quantum Dots in Freshwater and Marine Sentinel Invertebrates. Nanotoxicology 2017, 11, 289– 303, DOI: 10.1080/17435390.2017.1295111
-
Marchesano, V.; Hernandez, Y.; Salvenmoser, W.; Ambrosone, A.; Tino, A.; Hobmayer, B.; M de la Fuente, J.; Tortiglione, C. Imaging Inward and Outward Trafficking of Gold Nanoparticles in Whole Animals. ACS Nano 2013, 7, 2431– 2442, DOI: 10.1021/nn305747e
-
Moros, M.; Ambrosone, A.; Stepien, G.; Fabozzi, F.; Marchesano, V.; Castaldi, A.; Tino, A.; de la Fuente, J. M.; Tortiglione, C. Deciphering Intracellular Events Triggered by Mild Magnetic Hyperthermia In Vitro and In Vivo. Nanomedicine 2015, 10, 2167– 2183, DOI: 10.2217/nnm.15.70
-
Ambrosone, A.; Marchesano, V.; Carregal-Romero, S.; Intartaglia, D.; Parak, W. J.; Tortiglione, C. Control of Wnt/beta-Catenin Signaling Pathway In Vivo via Light Responsive Capsules. ACS Nano 2016, 10, 4828– 4834, DOI: 10.1021/acsnano.5b07817
-
Malvindi, M. A.; Carbone, L.; Quarta, A.; Tino, A.; Manna, L.; Pellegrino, T.; Tortiglione, C. Rod-Shaped Nanocrystals Elicit Neuronal Activity In Vivo. Small 2008, 4, 1747– 1755, DOI: 10.1002/smll.200800413
-
Tortiglione, C., An Ancient Model Organism to Test In Vivo Novel Functional Nanocrystals In Biomedical Engineering: From Theory to Application; Fazel-Rezai, R., Ed.; InTech: 2011; Vol. Biomedical Engineering: from theory to application, pp 225– 252.
-
Bode, H. R. The Interstitial Cell Lineage of Hydra: a Stem Cell System That Arose Early in Evolution. J. Cell Sci. 1996, 109, 1155– 1164
-
Hobmayer, B.; Jenewein, M.; Eder, D.; Eder, M.-K.; Glasauer, S.; Gufler, S.; Hartl, M.; Salvenmoser, W. Stemness in Hydra – A Current Perspective. Int. J. Dev. Biol. 2012, 56, 509– 517, DOI: 10.1387/ijdb.113426bh
-
David, C. N.; Gierer, A. Cell Cycle Kinetics and Development of Hydra Attenuata. III. Nerve and Nematocyte Differentiation. J. Cell Sci. 1974, 16, 359– 375
-
Hartl, M.; Mitterstiller, A. M.; Valovka, T.; Breuker, K.; Hobmayer, B.; Bister, K. Stem Cell-Specific Activation of an Ancestral myc Protooncogene with Conserved Basic Functions in the Early Metazoan Hydra. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 4051– 4056, DOI: 10.1073/pnas.0911060107
-
Ambrosone, A.; Marchesano, V.; Tino, A.; Hobmayer, B.; Tortiglione, C. Hymyc1 Downregulation Promotes Stem Cell Proliferation in Hydra Vulgaris. PLoS One 2012, 7, e30660, DOI: 10.1371/journal.pone.0030660
-
Hartl, M.; Glasauer, S.; Valovka, T.; Breuker, K.; Hobmayer, B.; Bister, K. Hydra myc2, a Unique Pre-Bilaterian Member of the Myc Gene Family, is Activated in Cell Proliferation and Gametogenesis. Biol. Open 2014, 3, 397– 407, DOI: 10.1242/bio.20147005
-
Dang, C. V.; O’Donnell, K. A.; Zeller, K. I.; Nguyen, T.; Osthus, R. C.; Li, F. The c-Myc Target Gene Network. Semin. Cancer Biol. 2006, 16, 253– 64, DOI: 10.1016/j.semcancer.2006.07.014
-
Amati, B.; Brooks, M. W.; Levy, N.; Littlewood, T. D.; Evan, G. I.; Land, H. Oncogenic Activity of the c-Myc Protein Requires Dimerization with Max. Cell 1993, 72, 233– 245, DOI: 10.1016/0092-8674(93)90663-B
-
Eilers, M.; Eisenman, R. N. Myc’s Broad Reach. Genes Dev. 2008, 22 (20), 2755– 2766, DOI: 10.1101/gad.1712408
-
Wilby, O. K.; Tesh, J. M. The Hydra Assay as an Early Screen for Teratogenic Potential. Toxicol. In Vitro 1990, 4, 582– 583, DOI: 10.1016/0887-2333(90)90119-E
-
Wilby, O. K.; Tesh, J. M. The Hydra Assay as a Nearly Screen for Teratogenic Potential. Toxicol. In Vitro 1990, 4, 582– 583, DOI: 10.1016/0887-2333(90)90119-E
-
Ambrosone, A.; Pino, P. D.; Marchesano, V.; Parak, W. J.; de la Fuente, J. M.; Tortiglione, C. Gold Nanoprisms for Photothermal Cell Ablation In Vivo. Nanomedicine 2014, 9, 1913– 1922, DOI: 10.2217/nnm.14.100
-
Marchesano, V.; Hernandez, Y.; Salvenmoser, W.; Ambrosone, A.; Tino, A.; Hobmayer, B.; de la Fuente, J. M.; Tortiglione, C. Imaging Inward and Outward Trafficking of Gold Nanoparticles in Whole Animals. ACS Nano 2013, 7, 2431– 2442, DOI: 10.1021/nn305747e
Cited By
This article is cited by 14 publications.
- Jin Woong Lee, Seok-Ryul Choi, Jun Hyuk Heo. Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS Applied Materials & Interfaces 2021, 13 (36) , 42311-42328. https://doi.org/10.1021/acsami.1c10436
- Miguel Xavier, Maria-Eleni Kyriazi, Stuart Lanham, Konstantina Alexaki, Elloise Matthews, Afaf H. El-Sagheer, Tom Brown, Antonios G. Kanaras, Richard O. C. Oreffo. Enrichment of Skeletal Stem Cells from Human Bone Marrow Using Spherical Nucleic Acids. ACS Nano 2021, 15 (4) , 6909-6916. https://doi.org/10.1021/acsnano.0c10683
- Alexander B. Cook, Paolo Decuzzi. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS Nano 2021, 15 (2) , 2068-2098. https://doi.org/10.1021/acsnano.0c09115
- Maria Moros, Anna Lewinska, Francesco Merola, Pietro Ferraro, Maciej Wnuk, Angela Tino, Claudia Tortiglione. Gold Nanorods and Nanoprisms Mediate Different Photothermal Cell Death Mechanisms In Vitro and In Vivo. ACS Applied Materials & Interfaces 2020, 12 (12) , 13718-13730. https://doi.org/10.1021/acsami.0c02022
- Giulia Veronesi, Maria Moros, Hiram Castillo-Michel, Lucia Mattera, Giada Onorato, Karl David Wegner, Wai Li Ling, Peter Reiss, Claudia Tortiglione. In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X-Ray Microspectroscopy. ACS Applied Materials & Interfaces 2019, 11 (39) , 35630-35640. https://doi.org/10.1021/acsami.9b15433
- Qinrui Fu, Zhi Li, Fengfu Fu, Xiaoyuan Chen, Jibin Song, Huanghao Yang. Stimuli-Responsive Plasmonic Assemblies and Their Biomedical Applications. Nano Today 2021, 36 , 101014. https://doi.org/10.1016/j.nantod.2020.101014
- Mingce Tian, Zhiqin Yuan, Ying Liu, Chao Lu, Zhongju Ye, Lehui Xiao. Recent advances of plasmonic nanoparticle-based optical analysis in homogeneous solution and at the single-nanoparticle level. The Analyst 2020, 145 (14) , 4737-4752. https://doi.org/10.1039/D0AN00609B
- Jing Li, Shijun Cai, Bing Zhou, Xiangxian Meng, Qiuping Guo, Xiaohai Yang, Jin Huang, Kemin Wang. Photocaged FRET nanoflares for intracellular microRNA imaging. Chemical Communications 2020, 56 (45) , 6126-6129. https://doi.org/10.1039/D0CC02395G
- Xiaoting Ji, Zhenbo Wang, Shuyan Niu, Caifeng Ding. Non-template synthesis of porous carbon nanospheres coated with a DNA-cross-linked hydrogel for the simultaneous imaging of dual biomarkers in living cells. Chemical Communications 2020, 56 (39) , 5271-5274. https://doi.org/10.1039/D0CC00499E
- Yao Yu, Ting Yang, Taolei Sun. New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine 2020, 15 (11) , 1127-1145. https://doi.org/10.2217/nnm-2019-0395
- Xiaoting Ji, Zhenbo Wang, Shuyan Niu, Caifeng Ding. DNAzyme-functionalized porous carbon nanospheres serve as a fluorescent nanoprobe for imaging detection of microRNA-21 and zinc ion in living cells. Microchimica Acta 2020, 187 (4) https://doi.org/10.1007/s00604-020-04226-6
- Maria Moros, Francesca Di Maria, Principia Dardano, Giuseppina Tommasini, Hiram Castillo-Michel, Alessandro Kovtun, Mattia Zangoli, Martina Blasio, Luca De Stefano, Angela Tino, Giovanna Barbarella, Claudia Tortiglione. In Vivo Bioengineering of Fluorescent Conductive Protein-Dye Microfibers. iScience 2020, 23 (4) , 101022. https://doi.org/10.1016/j.isci.2020.101022
- Devleena Samanta, Sasha B. Ebrahimi, Chad A. Mirkin. Nucleic‐Acid Structures as Intracellular Probes for Live Cells. Advanced Materials 2020, 32 (13) , 1901743. https://doi.org/10.1002/adma.201901743
- He Zhou, Hongwei Yang, Guangke Wang, Aijun Gao, Zhiqin Yuan. Recent Advances of Plasmonic Gold Nanoparticles in Optical Sensing and Therapy. Current Pharmaceutical Design 2020, 25 (46) , 4861-4876. https://doi.org/10.2174/1381612826666191219130033